



Fig. 10. Output voltage of the cavity. (a) Time response, horizontal scale 10 ns/cm, vertical scale 200 mV/cm with 60-dB attenuation in the line; (b) Spectral response, horizontal scale 100 MHz/cm (0-1 GHz coverage), vertical scale linear.

frequency of 2.1 GHz and 27 kW into $50\ \Omega$ at a frequency of 1.5 GHz. The rise times were on the order of 200 ps. Using the available data [7] for normalized spark-gap resistance it was concluded that operation of the device at *X* band is feasible.

IV. CONCLUSIONS

For proper operation of this device at frequencies less than 3 GHz the spark resistance must fall to a value less than the characteristic impedance of the line in a time less than T where $f_0 = 1/2T$ is the required frequency. The faster the rise time the more efficient is the operation of this device.

If a partial short is used, for minimal frequency shift due to coupling, the largest possible ratio of Z_0/Z_1 (where

Z_0 is the characteristic impedance of the line and Z_1 is the characteristic impedance of the output transmission line) should be used, and the inductance L_1 should be adjusted for the required coupling. At low frequencies when the cross-sectional dimensions are limited it may not be possible to make L_1 large enough to give the required coupling. In this case it will be necessary to decrease Z_0 in order to increase the coupling. The decrease of Z_0/Z_1 will result in a decrease of the resonant frequency. At frequencies higher than 3 GHz the spark-gap capacitance may be used to give a limited bandwidth output even though the normalized spark resistance, R is less than unity.

ACKNOWLEDGMENT

The authors acknowledge the support from Defense Research Establishment Ottawa and National Research Council of Canada.

REFERENCES

- [1] J. M. Proud, Jr., and W. H. McNeill, "High power travatron investigation," RADC-TR-74-33, AD777881.
- [2] S. D. Houston, and D. Bailey, "Hertzian generator development," RADC-TR-73-325, AD774567.
- [3] G. F. Ross, "A balanced antenna-generator for the distortionless radiation of subnanosecond pulses," in *1971 G-AP Int. Symp. Dig.*, pp. 311-314, Sept. 1971.
- [4] L. S. Levine and I. M. Vitkovitsky, "Pulsed power technology for controlled thermonuclear fusion," *IEEE Trans. Nuclear Sci.*, vol. NS-18, pp. 255-264, Aug. 1971.
- [5] I. A. D. Lewis and F. H. Wells, *Millimicrosecond Pulse Techniques* New York, McGraw-Hill, 1959.
- [6] V. M. Ristic and T. P. Sorensen, "Plasma excited microwave cavity," Canadian Patent Office Registration No. 918 343, 1975.
- [7] T. P. Sorensen and V. M. Ristic, "Rise time and time-dependent spark-gap resistance in nitrogen and helium," *J. Appl. Phys.*, vol. 48, pp. 114-117, Jan. 1977.

Correction to "Behavior of the Magnetostatic Wave in a Periodically Corrugated YIG Slab"

MAKOTO TSUTSUMI, MEMBER, IEEE, YASUNORI SAKAGUCHI, AND NOBUAKI KUMAGAI, SENIOR MEMBER, IEEE

In the above short paper,¹ in (21) the minus sign was inadvertently left out. Equation (21) should read as follows:

$$-B_{z0} \cos \theta + B_{x0} \sin \theta = -B_z \cos \theta + B_x \sin \theta.$$

Consequently, the following correction should be noted.

Manuscript received March 20, 1978.

The authors are with the Department of Electrical Communication Engineering, Osaka University, Suita, Osaka 565, Japan.

¹M. Tsutsumi, Y. Sakaguchi, and N. Kumagai, *IEEE Trans. Microwave Theory Tech.*, vol. MTT-25, pp. 224-228, Mar. 1977.

1) In the second and seventh lines of (23) substitute $+(\pi/d)\Delta$ and $+(K_z + (2\pi/d)m)$ for $-(\pi/d)\Delta$ and $-(K_z + (2\pi/d)m)$, respectively;

2) In (24) and (27), the factor $[1 - ((\pi/d)\Delta)^2]$ and $[\mu_1 - ((\pi/d)\Delta)^2]$ should have read $[1 + ((\pi/d)\Delta)^2]$ and $[\mu_1 + ((\pi/d)\Delta)^2]$, respectively.

Since the numerical computation was based on the assumption that $1 \gg ((\pi/d)\Delta)^2$ and $\mu_1 \gg ((\pi/d)\Delta)^2$, the results and conclusions reported in the paper are unaffected by this revision.